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Introduction

Congenital myopathy (CM) refers to a heterogeneous 
group of inherited neuromuscular disorders that are 
exhibited at birth or within the first few months of life 
(1). CMs are characterized by a delay in gross motor 
milestones, nonprogressive muscular hypotonia, and 
immunohistochemical findings, which ranges from 
myopathic to overtly dystrophic changes on muscle 
biopsy. These features impair the ability of muscles to 
contract, ultimately resulting in the loss of muscle fibers 
(2). CMs are associated with structural changes in some 
rare disorders with variable degrees of severity, including 
central core disease, nemaline myopathy, and congenital 
fiber-type disproportion myopathy (2). 

FHL1 is a member of four-and-a-half LIM domains 
protein 1 located on the Xq26.3 chromosome. The LIM 
domain proteins play an important role in sarcomeres 
synthesis and muscle mass regulation, and act as docking 
sites in a protein complex assembly based on a highly 
conserved cysteine-rich zinc-binding motif having a 
double zinc finger domain (3). Furthermore, FHL1 has 
three isoforms that are highly expressed in skeletal and 
cardiac muscles known as FHL1A, FHL1B, and 
FHL1C 

(4). Recently, FHL1 was identified as a causative gene in 
several muscle myopathies, including X-linked myopathy 
with postural muscle atrophy [Online Mendelian 
Inheritance in Man (OMIM) 300696], X-linked dominant 
scapuloperoneal myopathy (OMIM 300695), reducing 
body myopathy (OMIM 300717), rigid spine syndrome, 
and Emery–Dreifuss muscular dystrophy (OMIM 
300696) (5). Up until now, the exact pathomechanism 
associated with FHL1 mutations is unknown; however, 
proper genotype–phenotype correlations help in 
understanding the underlying FHL1 gene pathogenesis.     
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CMs are not regarded as progressive disorders; however, 
additional factors such as respiratory muscle weakness, 
scoliosis, and kyphoscoliosis may coexist, which are 
associated with extrapulmonary restriction of the lungs, 
resulting in the impairment of the pulmonary function. 
Additionally, they compromise the ability of the airways 
to clear the secretion and to predispose pneumonia 
and aspiration. As CMs usually involve the muscles of 
respiration, many patients require ventilatory assistance 
for a few months or years after the onset of the symptoms. 

Herein, using whole exome sequencing, we report a 
novel hemizygous missense mutation in the FHL1 gene 
in a patient with congenital fiber-type disproportion 
myopathy with recurrent aspiration. We reviewed all the 
previously reported cases to identify the different FHL1 
gene mutations that may lead to respiratory impairment 
in patients with CM and carried out genotype–phenotype 
correlation for FHL1-associated CM.

Case Presentation

The patient is an 8-year-old boy, who is the first and only 
child of healthy, non-consanguineous parents (Figure 1A). 
After an uneventful full-term pregnancy, the baby was born 
by an uncomplicated cesarean section due to prolonged 
rupture of the membrane; subsequently, he was discharged 
with his mother in a good condition. At the age of 5 months, 
the proband had hypotonia with failure to thrive and a 
relatively weak cry. The proband had developmental delays 
in the form of gross motor, speech, and language delays. 
In the following months, he required frequent admissions 
to the hospital and Pediatrics Intensive Care Unit (PICU) 
due to respiratory failure, recurrent chocking attacks, and 
aspiration pneumonia. His medical history included chronic 
lung disease and bronchial asthma. The family history 
was unremarkable, except for recurrent miscarriages for 
the mother where routine investigations were conducted, 

Figure 1. (A) Pedigree of the index family. (B) Thoracic-spine radiograph showing moderate thoracolumbar dextroscoliosis estimated 
by Cobb’s angle measuring 37° taken from the upper end plate of T12-2 lower end plate of the vertebral bodies, and there is a 
significant downward right-sided pelvic tilt. (C) DNA chromatogram, the index, and two healthy family members.



FHL1 myopathy

47

and all were normal including chromosomal analysis and 
placental histological findings.

On physical examination, the boy weighted 17.8 kg (< 3rd 
percentile), was 108 cm long (< 3rd percentile), and his 
head circumference was 50.5 cm (10th–25th percentile). 
He had dysmorphic features, including the myopathic 
face, low hairline, bilateral epicanthal folds, and gingival 
hyperplasia. 

Neurological examination revealed a generalized weakness 
that mainly involved both upper and lower limbs with 
poor head control and hyporeflexia. Joint hyperlaxity was 
observed through musculoskeletal examination without 
any signs of contracture. On auscultation, the air entry was 
reduced and crackles were heard over all the lung fields. A 
thoracic spine X-ray revealed bilateral perihilar air space 
opacity and dextroscoliosis with a Cobb angle of 37° 
taken from the upper end plate of T12-2 lower end plate 
of the vertebral bodies (Figure 1B). His electromyogram 
(EMG), nerve conduction study, and brain Magnetic 
resonance imaging (MRI) were all normal. During his 
disease course, his condition did not improve and he was 
frequently admitted and also needed to be intubated and 
ventilated; he was admitted to the PICU several times 
due to hypercarbia. By the age of 18 months, the patient 
was tracheotomized and became ventilator-dependent. 
Now, at the age of 8, the patient is stable and saturating 
well on a home ventilator. The proband is having a global 
developmental delay, wherein he is unable to sit or stand 
independently; however, according to his mother, he can 
write alphabets, numbers, and talk fluently for his age.

Muscle biopsy, from an unspecified site, was carried 
out at the age of 9 months. Histological analyses of the 
muscle showed a marked variation in muscle fibers size, 
due to the presence of evenly distributed fibers around 
the atrophic fibers, alternating with the normal-sized 
fibers. Additionally, ATPase reactions revealed type 1 
fiber atrophy, up to 50% smaller in size than type 2 fibers, 
with a tendency of type 1 fibers clustering. The presence 
of atrophic fibers with sarcolemmal folds was confirmed 
using ultrastructural examination. The fiber illustrated 
disorganization of myofibrils; however, no ring fibers 
were observed. There were occasional collections of 
enlarged mitochondria with cristae. Therefore, congenital 
fiber-type disproportion myopathy was compatible with 
the histomorphology of the biopsied muscle.

Chromosomal analysis, array Array based comparative 
genomic hybridization (CGH), and Sanger sequencing of 
RYR1 and TMP3 genes were unremarkable. Additionally, 
molecular testing for SMN gene and SNRPN gene was 
carried out using standard methods and the result 
were unremarkable. Subsequently, trio-Whole Exome 
Sequencing (WES) was carried out for the proband and 
parents using standard methods. The WES revealed a novel 
hemizygous missense variant (c.530A>C; p.Gln177Pro) 
in exon 6 of the FHL1 gene (NM_001159702.3) 
located on chromosome Xq26.3 (Figure 1). Using 
Sanger sequencing, the identified variant segregated 
perfectly from the disease phenotype and was found in 

the mother in a heterozygous status, while the father 
and two maternal uncles’ results revealed normal wild 
type. This variant classified as likely pathogenic based 
on the American College of Medical Genetics (ACMG) 
guidelines and has not been previously observed in large-
scale sequencing databases, such as Exome Aggregation 
Consortium, dbSNP/1,000 genome, Exome Sequencing 
Projects or Genome Aggregation Database, and local 
database. This substitution (c.530A>C; p.Gln177Pro) was 
predicted to be deleterious by several online computational 
prediction tools [PolyPhen2, MutationTaster, and Sorting 
Intolerant From Tolerant (SIFT)]. Complete attention 
to the TPM3, ACTA1, and RYR1 genes did not reveal 
any possible diseases-causing variants in any of them. 
Furthermore, manual analysis of the raw data generated 
from WES, including Binary Alignment Map (BAM) file, 
failed to identify deletion or duplication in the above-
mentioned gene.

Discussion

CMs are diagnosed based on clinical features associated 
with respiratory insufficiency, feeding difficulties, and 
histological changes that are seen in the patients’ biopsied 
muscles. However, of late, genetic testing is considered 
as one of the preferred methods since it can detect a 
breadth of phenotypic variability associated with each 
gene (2). Recently, most of the studies have identified 
the mutations in the FHL1 (which plays a critical role 
in the development and function of the skeletal muscles) 
as a causative gene in different human myopathies, 
considering its high level of expression in the skeletal as 
well as cardiac muscles (6).

In the previous studies, FHL1 mutation has been 
identified in various phenotypes of X-linked myopathy, 
such as X-linked dominant scapuloperoneal myopathy, 
distal myopathy with hypertrophic cardiomyopathy, 
Emery–Dreifuss muscular dystrophy with rigid spine, 
and many other phenotypes (7). However, the association 
between FHL1 mutation and respiratory insufficiency is 
discussed without clear phenotype delineation. Only a 
few studies have identified the coexistence of respiratory 
impairment in association with FHL1 mutation in their 
patients (Table 1). 

In this study, we report a patient with a novel hemizygous 
missense mutation (c.530A>C; p.Gln177Pro) in exon 6 
of the FHL1 gene associated with congenital myopathy 
and early respiratory muscle involvement. The identified 
mutation changes a highly conserved Gln amino acid at 
position 177 into a Pro amino acid. Glutamine is a polar 
amino acid, while proline is a hydrophobic aliphatic 
amino acid. This mutation (p.Gln177Pro) results in 
secondary structure disability and improper FHL1 
function. There are around 12 different isoforms in the 
RefSeq and Ensemble database for the FHL1 gene, and 
9 out of 12 results in the same protein changes from Gln 
to Pro at different amino acid positions (177 or 206), and 
in the three remaining isoforms the variant is considered 
as a non-coding exon. The FHL1 protein consists of four 
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LIM domains (LIM1–4), a half-LIM domain (Z), and an 
N-terminal and C-terminal (Figure 2B). The mutation 
(p.Gln177Pro) identified in our patient is located in the 
highly conserved LIM3 domain (Figure 2B,C). 

Some of the previously reported patients who had FHL1 
mutations were severely affected, as they required 
ventilatory support either permanently or while sleeping, 
and had various symptoms from childhood to late 
adulthood (4,8). About five patients died from respiratory 
failure and the age of the deceased individuals ranged 
widely from the age of 6 to 50 (4,8–10). Until now, 
few pathogenic mutations in the FHL1 gene have been 
reported and mostly they appear in the second and 
fourth LIM domains. The mutations in the FHL1 gene 
were identified at positions c.367C>T, c.369C>G, 
c.395G>T, and c.672C>G, where c.367C>T, c.369C>G, 
and c.395G>T were reported mostly in early childhood, 
while the c.672C>G variant has been associated with the 
later onset of the symptoms (4,8–10). Other mutations, 
such as c.381_382insATC, c.827G>A, c.457T>C, 
c.377G>A, and c.451–459del, have been associated with 
various phenotypes. However, most of them present at 
a later stage with respiratory insufficiency (8,9,11–14). 

Because of the small number of available patients with an 
unclear description of respiratory status, there is no clear 
phenotype–genotype correlation neither with the onset 
nor with severity of the respiratory complications.

Conclusion

The findings in this study increase the mutational spectrum 
of the FHL1 gene associated with respiratory insufficiency 
and also ensure that clinicians and respiratory therapists 
are aware of the respiratory involvement in the patients 
with FHL1 gene mutations. Further studies are required 
to dissect the pathophysiology of the FHL1 mutations 
in terms of respiratory muscle involvement to obtain a 
precise future management strategy.
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