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1. Introduction

Mitochondrial disorders are characterized by defective 
mitochondrial oxidative phosphorylation (OXPHOS) 
and patients manifest varying phenotype constellations 
involving multiple systems and organs with high energy 
demands such as the heart, brain, skeletal muscles, and 
others (1). Clinical presentations include hypertrophic 
cardiomyopathy, epilepsy, psychomotor developmental 
delay and/or regression, failure to thrive, ataxia, muscle 
tone changes (hypotonia or hypertonia), ptosis, optic 
atrophy, ophthalmoplegia, nystagmus, elevated serum 
lactate, and abnormal magnetic resonance imaging 
(MRI) signal changes. The wide variation and overlap 
of these presentations pose a challenge for clinicians 
to suspect and diagnose patients. Dual control of the 
mitochondrial proteome, and subsequently its functions, 
by both nuclear and mitochondrial genomes (nDNA and 
mtDNA, respectively) entails that mutations in either 
genome could lead to mitochondrial dysfunction and 
therefore mitochondrial disease. Hence, mitochondrial 

disorders could follow any mode of inheritance, including 
X-linked and autosomal inheritance via nDNA mutations
and maternal inheritance via mtDNA mutations (2).

Mitochondrial disorders were first clinically described in 
the late 1800’s by Theodore Leber who reported patients 
with maternally inherited visual loss involving the optic 
nerve (3). It was not until 1988 that mtDNA deletions and 
mutations associated with mitochondrial ocular myopathy 
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ABSTRACT

Mitochondrial disorders are a challenging group of human genetic conditions to diagnose due to extensive 
clinical heterogeneity. Mitochondria are the only cellular organelles containing their own genome and their 
functions are governed by both the nuclear and the maternally inherited mitochondrial genomes, thus mito-
chondrial disease could follow all possible modes of inheritance adding to the complexity of diagnosis. Even 
though the prevalence of mitochondrial disease has been studied in various parts of the world, the data 
regarding their prevalence in the Middle Eastern population remains limited. However, novel mitochondrial 
disease genes have been identified within the highly consanguineous Arab Middle East population with the 
help of novel genetic technologies including high throughput next-generation sequencing (NGS), leading to 
the identification of important founder mutations underlying several mitochondrial disorders. Furthermore, 
novel variants in mitochondrial disease genes help expand the spectrum of clinical phenotypes studied. The 
enrichment of reported phenotypes could enhance targeted gene panels leading to a rapid and precise genetic 
diagnosis facilitating genetic counseling. The aim of this review is to highlight the impact of NGS on mitochon-
drial disease diagnosis in the Middle Eastern population, particularly in identifying novel candidate genes and 
founder mutations.
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and Leber Hereditary Optic Neuropathy (LHON) were 
reported (4,5). Since then, other mtDNA deletions and 
mutations have been uncovered in patients presenting 
with maternally inherited mitochondrial disease. 
Subsequently, the first nDNA mutation associated with 
mitochondrial disease was reported in 1995 involving a 
succinate:ubiquinone oxidoreductase (OXPHOS complex 
II) subunit in a patient presenting with Leigh syndrome 
(LS). LS is a progressive neurodegenerative disorder that 
includes multisystem presentations (6). To date, mutations 
in more than 75 genes (in both mtDNA and nDNA) have 
been associated with LS and this extensive genotypic 
heterogeneity has previously hampered confirmatory 
genetic testing of this clinical syndrome (7). Alternatively, 
a few mitochondrial disease genes have shown a strong 
genotype–phenotype correlation such as the association 
of cardiomyopathy and lactic acidosis in patients with 
AGK, GTPBP3, and MTO1 gene mutations where the 
congenital cataracts is an additional phenotype noted 
in AGK patients (8,9). The prevalence of mitochondrial 
disease cases is estimated to be 6.2–23.3 in 100,000 
worldwide (10–12). However, increased prevalence rates 
were reported in highly consanguineous populations 
such as in the Australian Lebanese population, which has 
a 12-fold higher prevalence rate, and the population in 
the Saguenay-Lac St-Jean region of Quebec where 50 
in 100,000 births develop an OXPHOS defect due to a 
founder mutation in LRPPRC (13–15).

2. Mitochondrial structure, function and 
genetics

Mitochondria are double-membraned cellular organelles, 
ubiquitous to all nucleated cells, that house numerous 
metabolic processes and mechanisms for generating 
cellular energy in the form of adenosine triphosphate 
(ATP) including the citric acid cycle, fatty acid oxidation, 
gluconeogenesis, ketogenesis, urea cycle, and OXPHOS 
(1,16). Mitochondria also play a crucial role in other 
cellular processes and pathways such as apoptosis, 
autophagy, calcium homeostasis, and heme and iron-
sulfur cluster biosynthesis. Enzymes and proteins of 
these processes are encoded in both the nuclear and 
mitochondrial genomes. Mitochondria contain multiple 
copies of their own 16.6 kb closed circular genome which 
exceeds 1,000 copies per cell in some tissues. mtDNA 
codes for 37 genes, including 22 mitochondrial transfer-
RNAs (mt-tRNA), 2 mitochondrial ribosomal-RNAs (mt-
rRNA), and 13 OXPHOS protein subunits (17). Analysis 
of the mitochondrial proteome identified 1,158 proteins 
that localize to the mitochondria; with only 13 proteins 
encoded in the mitochondrial genome, consequently, the 
majority of proteins (about 99%) are nuclear-encoded 
(MitoCarta2.0; MitoMiner v4.0) (18–20).

Replication of mtDNA and expression of its genes 
requires nuclear-encoded proteins that are imported into 
the mitochondrial matrix. The mitochondrion’s double 
membrane structure act as an obstacle for the importation 

of such proteins and this situation is overcome via the 
mitochondrial translocase of the inner membrane (TIM)/
translocase of the outer membrane (TOM) system 
which recognizes mitochondrial targeting sequences on 
nuclear-encoded proteins destined to be imported into 
the mitochondria (21). mtDNA genes are expressed 
using a collection of imported proteins, including 
the mitochondrial RNA polymerase (POLRMT) that 
transcribes the mitochondrial genes, the RNase P 
complex and RNase Z (ELAC2) nucleases that process 
premature mitochondrial RNA (mtRNA) transcripts, and 
the mitochondrial ribosome complex, which is comprised 
of a collection of nuclear-encoded subunits and the two 
mitochondrial encoded mt-rRNAs, that utilizes mt-tRNA 
to translate and assemble polypeptides (22,23).

The five OXPHOS transmembrane protein complexes 
(complexes I, II, III, IV, and V), which reside in the 
inner mitochondrial membrane (IMM), couple electron 
transport through them with the active transport of protons 
from the matrix into the intermembrane space (17). The 
generated proton gradient across the IMM is harnessed 
by ATP synthase (complex V) by facilitating the protons’ 
diffusion into the matrix and generating ATP (the energy 
currency of cells) in the process (24). Genetic variants in 
either genome resulting in the disruption of OXPHOS, 
mtDNA replication and expression, protein importing 
mechanisms, protein assembly, or mitochondrial 
functions could result in mitochondrial dysfunction (16).

mtDNA mutations can coexist at varying levels with 
wildtype species within cells of an individual. The 
scenario of coexisting mtDNA genotypes is termed 
“heteroplasmy,” while the presence of a variant in the 
absence of wildtype mtDNA is termed “homoplasmy.” 
Mitochondria are inherited exclusively from the mother, 
but offspring from a single mother might harbor different 
levels of variant heteroplasmy due to a hypothesized 
“bottleneck” effect where only a random selection 
of maternal mitochondria are inherited (12,25,26). 
Not all mtDNA variants are pathogenic; some lead to 
synonymous codon changes and are used for haplotyping 
and determining maternal lineage (27). Tissues within a 
single individual may have varying levels of heteroplasmy 
due to the asymmetric distribution of mtDNA during 
mitosis. Patients with pathogenic mtDNA variants 
frequently present clinically when heteroplasmy exceed 
a certain level commonly observed at 60% or above; this 
is known as the “threshold effect” (28). The elevated 
heteroplasmy levels in tissues result in OXPHOS defects 
leading to clinical presentations. Heteroplasmy levels 
of the highly studied mt-tRNA leucine gene (MT-TL1) 
variant m.3243A > G, commonly reported in patients 
presenting with Mitochondrial Encephalomyopathy, 
Lactic Acidosis, and Stroke-like episodes (MELAS), have 
been reported to decrease in blood in the first two decades 
of life and is estimated to decrease at a rate of 2.3% per 
year (29,30). DNA extracted from other sources such 
as muscle, buccal cells, and urine produced higher and 
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more accurate heteroplasmy levels (31). Therefore, DNA 
extracted from peripheral blood is not a preferred source 
for determining mtDNA heteroplasmy levels; however, it 
helps in estimating heteroplasmy levels in patients (32).

3. Diagnosis of mitochondrial disease

In addition to clinical manifestations, investigations 
of mitochondrial disease utilize a series of methods 
to support diagnoses in patients. High lactate levels in 
blood and cerebrospinal fluid are indicators of metabolic 
stress and support the diagnosis of mitochondrial 
dysfunction along with elevated pyruvate due to impaired 
OXPHOS and enhanced anaerobic glycolysis, while a 
mild to moderate elevation of creatine kinase may be 
observed at rest in patients with muscle involvement 
(33). Occasionally, very high levels of serum creatine 
kinase are observed in patients who manifest recurrent 
rhabdomyolysis or rapid progressive myopathy (34). 
Other biochemical findings such as elevated amino acid 
levels, acylcarnitine levels, and ammonia are also strong 
indicators of mitochondrial disease. Radiological findings 
are important since various areas of the brain have been 
frequently reported to be affected in mitochondrial 
disease patients with neurological presentations. 
Quantification of mtDNA is an established method of 
detecting mtDNA depletion in tissues (usually muscle), 
a recurrent phenotype in mitochondrial disease patients. 
Measuring OXPHOS enzyme activities supports the 
diagnosis and narrows down the cause of mitochondrial 
disease along with histochemical findings of OXPHOS 
defect in muscle tissue (35,36). The investigation of 
protein expression and complex assembly in tissue using 
immunoblotting is another method utilized to support 
genotyped mitochondrial disease diagnoses (37,38).

4. Impact of next generation sequencing

Genetic investigations of disorders have evolved over 
time from linkage analyses and targeted exon sequencing 
of suspected genes to the utilization of high throughput 
next-generation sequencing (NGS) technology which is 
capable of sequencing the whole genome of a patient 
[whole genome sequencing (WGS)] or only the protein-
coding regions [whole exome sequencing (WES)] 
reducing the genotyping turnaround time substantially. 
Over time, new technologies became more accessible, 
largely due to cost reduction, favoring a shift to sequence 
patients’ DNA prior to undergoing invasive procedures, 
such as muscle biopsies in mitochondrial disease patients 
(39). Coalitions of scientists employed NGS to identify 
variants of healthy cohorts in the US (Exome Variant 
Server), the UK (1,000 Genome Project), and over 100,000 
individuals (ExAC and gnomAD) from various ethnic 
backgrounds (40,41). The compiled variant databases 
serve as a valuable reference for scientists investigating 
mutations in patients. NGS has also been utilized in large 
patient cohorts leading to the identification of novel 
variants in known pathogenic genes and the discovery 
of novel candidate genes associated with mitochondrial 

disease (42,43). Alternative high throughput techniques 
such as SNP analysis, homozygosity mapping, 
and autozygome analysis detect extended loss of 
heterozygosity regions and could narrow down genes 
of interest to these regions (44,45). These are helpful 
methods to investigate recessive disorders in patients 
from consanguineous families. So far, over 280 genes 
encoded in both genomes have been associated with 
mitochondrial disease and NGS was the protagonist in 
the discovery of at least 116 novel candidate genes since 
2010 (46,47).

5. Mitochondrial disease in the Middle East

Consanguinity and the practice of endogamy is a crucial 
factor in clinical genetics. Consanguineous marriages 
are common practice in many parts of the world (20% 
of the global population) (48). Consanguinity rates in 
the Middle East reportedly exceed 50% compared to 
other countries in the world (49). Prevalence of inherited 
disorders amongst consanguineous populations is often 
higher than in non-consanguineous populations (13,50). 
Since mitochondrial disorders follow various modes of 
inheritance due to the bigenomic control of mitochondrial 
function, consanguineous populations are likely to have a 
higher incidence and prevalence of mitochondrial disease 
compared to global rates.

Prior to the introduction of NGS, a number of studies 
utilized investigative tools such as linkage analysis and 
complementary DNA (cDNA) sequencing to study 
patient cohorts that included Middle Eastern Arabs; these 
studies identified novel candidate genes associated with 
mitochondrial function such as TK2, PDHB, SLC19A3, 
and SLC25A22 (51–54). During the same time, novel 
pathogenic variants in Arab Middle Eastern families 
were also reported in known mitochondrial disease 
genes such as PDHX, ETHE1, MPV17, and SLC25A20 
(55–58). Depending on the gene of interest, researchers 
would usually include functional aspects to support the 
pathogenicity of variants. For example, patients with 
PDHX variants had pyruvate dehydrogenase enzyme 
activity measured or steady-state protein expression 
determined using immunoblotting (55).

6. Impact of NGS in the Middle East: novel 
candidate genes, founder mutations and 
functional work

Following the introduction of NGS, numerous cohort 
studies investigated the cause of disease in undiagnosed 
patients suspected of genetic diseases in the Middle 
East, mostly from consanguineous families (44,59–66). 
Investigations, involving over 2,000 families, were 
successful in diagnosing over half of the patients and 
discovered over 170 novel candidate genes associated 
with various genetic disorders (Table 1). Recent studies 
have identified a number of novel candidate genes 
associated with mitochondrial function in Middle 
Eastern families: MFF, FBXL4, ELAC2, PET100, ISCA2, 
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PMPCA, SLC39A8, SLC25A42, YME1L1, MIPEP, 
MICU2, COX5A, COQ5, and NUDT2 (Figure 1) (44,67–
78). Some of the studies identified variants as founder 
mutations in unrelated families (such as in ISCA2, 
PMPCA, PET100, and NUDT2 genes), while variants 
in other genes were identified as founder mutations 
after further investigations (FARS2, SLC19A3, ELAC2, 
SLC25A42, SLC39A8, and MICU1 genes) (Table 2; 
Figure 2) (79–84). For example, WES was utilized to 
investigate patients with infantile cardiomyopathy from 
three families, including a consanguineous family of 
Arab Middle Eastern descent (67). Biallelic mutations in 
ELAC2, the mitochondrial RNase Z protein responsible 
for the endonucleolytic cleavage at the 3 termini of 
mt-tRNA transcripts, segregated in all families with a 
homozygous missense variant (p.Phe154Leu) reported in 
the Arab family. Functional studies on patient fibroblasts 
showed an accumulation of unprocessed mtRNA 
transcripts and OXPHOS subunit defects compared to 
control fibroblasts. Another study investigated infantile 
cardiomyopathy in Arab families and identified the 
previously reported homozygous variant in 16 unrelated 

consanguineous Arab families (81). Furthermore, 
patients with leukodystrophy and neuroregression from 
five unrelated consanguineous families were investigated 
using NGS and results showed they all were homozygous 
for an ISCA2 founder mutation (p.Glu77Ser) when it was 
first reported as a novel candidate gene (69). Functional 
studies of ISCA2 patient fibroblasts showed multiple 
OXPHOS complex defects along with defects in pyruvate 
dehydrogenase and α-ketoglutarate dehydrogenase 
complexes compared to controls (85). Further studies 
also identified the founder mutation in patients with 
leukodystrophy from nine unrelated consanguineous 
Saudi families by sequencing the founder mutation 
directly (86). Till now, more than 20 novel candidate 
genes involved in mitochondrial function were identified 
with more than eight founder mutations reported in these 
Middle Eastern families.

7. Expanding the clinical spectrums of 
mitochondrial disorders

In addition to identifying novel variants, novel candidate 
genes, and founder mutations, many reports expanded 
the clinical phenotype of patients with different gene 
mutations leading to a better understanding of the 
phenotypic spectrum in patients (MICU1, FARS2, 
SLC25A42, ISCA2, MPV17, ECHS1, SERAC1, 
WARS2) (82–84,86–90). The latest report of patients 
harboring the ISCA2 founder mutation helped expand 
the phenotypic spectrum of the disease. A variety of 
functional experiments have been employed in assessing 
the pathogenicity of novel genetic variants, including 
protein steady-state immunoblotting (FARS2, ELAC2, 
YME1L1, FBXL4, and MIPEP), knock out and rescue 
experiments (YME1L1 and FBXL4, respectively), and 
analyses of OXPHOS complex activities and oxygen 
consumption (FBXL4 and FARS2, respectively). In some 
less satisfactory circumstances, it was only possible to 
report the genetic variant with preliminary in silico 
predictions of pathogenicity (MFF). 

Table 1. Summary of studies utilizing NGS involving patients from the Middle East.

Reference Families Diagnosed Novel candidate genes

Shamseldin et al. [44] 10 families 10 families 2 novel candidate genes
Ben-Rebeh et al. [59] 34 families 34 families 0

Dixon-Salazar et al. [60] 118 families 32 families (37 %) 22 novel candidate gene
(19% of cohort)

Alazami et al. [61] 143 families 104 families (73%) 69 novel candidate genes

Yavarna et al. [62] 149 probands 89 families (60%) 7 novel candidate genes
(5% of cohort)

Anazi et al. [63] 337 families 196 families (58%) 3 novel candidate genes
Alfares et al. [64] 454 probands 222 probands (49%) 0

Monies et al. [65] 1,000 families 340 families (34%) 75 novel candidate genes 
reported

Total 2,245 families 1,249 families 178 novel candidate 
genes

Figure 1. Number of novel candidate genes associated with 
mitochondrial function/disease reported in the Arab Middle 
East population between 2003 and 2018.
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mtDNA mutations and deletions were not reported 
as extensively as nDNA mutations in the Arab Middle 
Eastern population. A MELAS patient with a novel 
mtDNA variant, m.12299A > C [affecting the alternative 
mt-tRNA leucine gene (MT-TL2) to the well-studied 
m.3243A > G variant] was reported in Saudi Arabia, 
and a number of studies reported on the association 
between coronary artery disease and LHON in identified 
mtDNA variants in the Middle East population (91–93). 
In addition, studying patients with mtDNA deletions 

expanded the knowledge regarding the phenotypes 
observed in Kearns–Sayre syndrome patients (94). 

Biochemical, radiological, and clinical findings assist 
clinicians and investigators in situations where strong 
genotype–phenotype correlations exist. For example, 
ETHE1 (coding for persulphide dioxygenase) is a gene 
with more than 30 variants reported in patients. Even 
though clinical presentations vary between patients, one 
recurrent finding in patients is elevated ethylmalonic 

Table 2. List of genes with identified founder mutations in the Arab Middle East population, reported phenotypic 
observations, and possible therapeutic treatments.

Gene Protein Variants
Observed phenotypes/syn-
dromes; key findings

Treatment

ECHS1
Enol-CoA  
hydratase, Short 
chain 1

27 variants reported.

Elevated 3MGA; lactic acidosis; 
apnoeic episodes
MRI: Basal ganglia lesions,  
cerebral and cerebellar atrophy; 
MRS lactate peak

N/A

ELAC2
Mitochondrial 
RNase Z

Founder mutation:
c.460T > C
p.Phe154Leu

Hypertrophic cardiomyopathy, 
elevated lactate, multiple OXPHOS 
defects

N/A

ETHE1
Persulphide 
dioxygenase

34 variants reported.
Two variants exclusively 
reported in Arabs:
c.505 + 1G > T; p. exon 
4 skipping
and genetic deletion of 
exon 4

Ethylmalonic encephalopathy,
ethylmalonic aciduria, elevated 
C4 and C5 acylcarnitines (SCAD 
patients have higher C4 and C5 
acylcarnitine levels)

Metronidazole,
N-acetycysteine

FARS2
Mitochondrial 
phenylalanyl- 
tRNA synthetase

Founder mutation:
c.431A > G
p.Tyr144Cys

Two phenotypes:
Early-onset epileptic  
encephalopathy
Late-onset spastic paraplegia

N/A

ISCA2
Iron-sulphur 
cluster assembly 
protein 2

Founder mutation:
c.229G > A
p.Glu77Ser

MRI: leukodystrophy, spinal cord 
involvement
Variable clinical phenotype

N/A

MICU1
Mitochondrial 
calcium  
uniporter 1

Founder mutation:
c.553C > T
p.Gln185*

Elevated liver transaminase, 
elevated creatine kinase, normal 
lactate

N/A

SLC19A3
Mitochondrial 
thiamine  
transporter 2

Founder mutation:
c.1264A > G
p.Thr422Ala

Three phenotypes:
Early-infantile Leigh-like syndrome;
Childhood biotin-thiamine  
responsive basal ganglia disease;
Adult Wernicke's-like encephalop-
athy

Biotin, thiamine

SLC25A42
Mitochondrial 
CoA transporter

Founder mutation:
c.871A > G
p.Asn291Asp

Variable clinical phenotype
MRI: iron deposits in globus  
pallidus and substantia nigra

N/A

SERAC1
Serine active site 
containing 1 42 variants reported.

Two phenotypes:
Hypotonia with progressive  
spasticity, dystonia, hearing loss, 
elevated 3MGA
Complicated hereditary spastic 
paraplegia
Key finding:
MRI: “putaminal eye”

N/A
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acid in urine accompanied by elevated lactate and C4 
and C5 acylcarnitine levels in the blood (95). These 
findings differ from patients with short-chain acyl CoA 
dehydrogenase (SCAD) deficiency as their C4 and C5 
acylcarnitine levels are much higher than in ETHE1 
patients. This observation helps to better differentiate 
between these groups of patients who are distinguished 
earlier using biochemical findings alone. Another 
example of phenotypes supporting genotype–phenotype 
correlation is the MRI finding of the “putaminal eye” 
in SERAC1 patients (89). With more than 40 SERAC1 
variants reported, the commonly associated phenotype 
constellation in patients was “3-methylglutaconic 
aciduria, Deafness, Encephalopathy, and Leigh-like” 
syndrome. A newly observed phenotype “Complicated 
Hereditary Spastic Paraplegia” in SERAC1 patients shares 
the same finding of the “putaminal eye” in patients’ MRI.

Some interesting findings in the Middle Eastern 
population include a homozygous OPA1 mutation 
reported in female siblings with unaffected heterozygous 
parents (96). Autosomal dominant optic atrophy has only 
been previously reported in patients due to inherited 
heterozygous OPA1 mutations. Steady state protein 
immunoblotting showed an OPA1 protein defect and 
mtDNA copy number depletion in both homozygous 
siblings. Another interesting case was the reporting of 
compound heterozygous POLG variants in a female 
patient with consanguineous parents (97). Clinical, 
radiological, and genotype were mentioned but no further 
functional association was reported. These findings show 
that compound heterozygous mutations may still remain 
responsible for disease in consanguineous families and 
need to be given due consideration when analyzing 
WES data. Genetic findings of NGS in the Arab Middle 
Eastern population had a variable influence on previously 
observed genotype–phenotype correlations.

8. Preventable mitochondrial diseases

Biotin-Thiamine-Responsive Basal Ganglia Disease 
is an example of the earliest reported mitochondrial 
diseases in the Middle East (98). Clinical presentations 
were described in 10 patients of Arab ethnicity including 
consistent MRI findings involving the basal ganglia. 
Biotin supplementation was an effective treatment for the 
condition. Linkage analysis and targeted candidate gene 
sequencing uncovered mutations in the SLC19A3 gene 
coding for the mitochondrial thiamine transporter 2 (53). 
It is important to note that all patients had consanguineous 
parents. One of the identified mutations in this study was 
a founder mutation later genotyped in a large cohort 
of SLC19A3 patients from unrelated families of Saudi 
ancestry; genotyping was performed by either targeted 
sequencing of the gene or by WES (80). When it comes to 
genotype–phenotype correlations, it is important to note 
that, so far, SLC19A3 mutations have been associated 
with three major phenotypic presentations: early-infantile 
Leigh-like syndrome; childhood biotin-responsive basal 
ganglia disease, and adult Wernicke’s-like encephalopathy. 
MRI brain scans of all patients, regardless of the phenotype 
group, showed lesions involving the basal ganglia. 
However, MRI findings were not specific to SLC19A3 
patients; it was one of the most common findings in LS, 
which is associated with more than 75 genes encoded in 
both genomes. This weakens the genotype–phenotype 
relationship since it overlaps with other gene findings. 
The responsiveness and improvement of lesions in 
patients after biotin and thiamine supplementation was 
a key finding in SLC19A3 patients, hence the naming. 
However, early-infantile Leigh-like syndrome patients 
were less responsive to supplementation and experience 
high rates of early mortality (99).

9. Treatments

Until now, there is no established curative treatment 
for the mitochondrial disease, but there are therapeutic 
approaches that may alleviate some of the symptoms 
caused by dysfunctional mitochondria (7,87,100). These 
strategies include supplements that enhance OXPHOS 
complex function such as the before mentioned biotin and 
thiamine, antioxidants such as coenzyme Q10, vitamins 
C and E, and substances that enhance the biogenesis of 
mitochondria. As mentioned above, biotin and thiamine 
are effective in treating SLC19A3 patients, metronidazole 
(a bactericide) and N-acetylcysteine were both effective 
in improving clinical symptoms in ETHE1 patients, and 
L-arginine was reported to reduce the occurrence of 
stroke-like episodes (SLE) in MELAS patients though 
studies were small and the natural history of SLEs in 
MELAS was not well understood (98,101,102). Genetic 
counseling in families with genotyped pathogenic 
variants can assist couples who opt for Pre-implantation 
Genetic Diagnosis to reduce their chances of having 
affected offspring (103,104).

Figure 2. Number of genes associated with a mitochondrial 
function where founder mutations have been identified in the 
Arab Middle East population (blue) and the number of families 
reported as diagnosed (red) between 2003 and 2018.
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10. Future Strategy for genotyping and diagnosing 
patients of Arab Middle Eastern population

WES has proven fruitful in genotyping and diagnosing 
mitochondrial disease patients. Due to the rapid decline in 
NGS costs, both WES and WGS are recommended as the 
first tiers for investigating mitochondrial disease patients 
that do not present with a syndromic phenotype and lack 
genetic diagnoses (105). Consanguineous families with 
multiple affected siblings are excellent candidates as they 
likely harbor homozygous variants; however, compound 
heterozygous mutations should not be overlooked in these 
families. Upon identifying candidate variants, follow-up 
studies could determine whether the variants segregate 
within family members in a manner that elucidates disease 
presentation within the family. Mitochondrial disorders 
fall under the umbrella of inborn errors of metabolism 
disorders where some disorders such as peroxisomal 
disorders and lysosomal storage disorders patients 
present with overlapping phenotypes with mitochondrial 
disease patients (106). The simple process of genotyping 
a patient using NGS may lead to a diagnosis, be it of 
mitochondrial disease or otherwise, without requiring an 
invasive muscle biopsy to investigate OXPHOS defects to 
confirm or dismiss mitochondrial disease.

11. Conclusion

Genotyping patients suspected of mitochondrial disease 
using WES resulted in high diagnosis rates with short 
turnaround times, identified novel pathogenic genes 
associated with mitochondrial function, and discovered 
founder mutations in the highly consanguineous Middle 
Eastern population making it a valuable tool for rapid 
genetic diagnoses. It also eliminates the need for 
patients to undergo invasive muscle biopsy procedures 
to be diagnosed clinically. Although not all patients 
analyzed using WES would be diagnosed, the continued 
genotyping of patients suspected of mitochondrial disease 
could lead to the discovery of further novel candidate 
genes associated with mitochondrial disease. The 
number of genes associated with mitochondrial disease 
is constantly evolving and recent functional studies of 
poorly characterized mitochondrial proteins expanded 
the etiological understanding of disease development 
by determining protein–protein interactions (107). In 
addition, functional assessment of genome-wide CRISPR/
Cas9 knockouts on OXPHOS dependent cell growth 
identified a number of mitochondrial proteins crucial 
for OXPHOS function (108). With the aid of declining 
costs of WES and WGS, continued efforts to expand the 
number of genes associated with mitochondrial disease 
and determining the underlying etiology of disease helps 
clinicians diagnose patients, expand the heterogeneous 
phenotypic spectrum of disease, and provide their 
families with the appropriate genetic counseling.
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