

4 **ORIGINAL ARTICLE**

5 **Impact of genetic counselling on awareness
6 and mental health in sickle cell families**

7 Sagar Bayaskar^{1*}, Aishwarya Mahalle¹

8 **ABSTRACT**

9 **Background:** Sickle cell disease (SCD) is a hereditary blood disorder with high prevalence among tribal populations in India. This study evaluates the impact of genetic counselling on disease awareness and mental health in India's tribal communities, where limited access to such services exacerbates disease burden.

12 **Methods:** A qualitative, cross-sectional study involved 35 participants aged 20-44 years in a high-risk tribal region of Maharashtra, India. Participants included one SCD patient, one caregiver, one community health worker, two healthcare professionals (a hematologist and a psychiatrist), and 30 community members. Semi-structured interviews, developed through literature review and pilot-tested, explored SCD knowledge, preventive strategies, and psychological well-being. Thematic analysis compared outcomes between counseled ($n = 18$) and non-counseled ($n = 17$) participants.

18 **Results:** Counseled participants demonstrated greater knowledge of SCD's genetic basis (94% vs. 24%), symptoms (89% vs. 35%), and preventive measures (83% vs. 12%), such as premarital screening. They also showed higher engagement in community initiatives (83% vs. 12%) and reported reduced anxiety (78% vs. 29%), improved coping, and greater emotional resilience. Non-counseled participants often misidentified SCD as an infection (59%) or general anemia (41%) and reported higher stress (71%) and sleep disturbances (53%).

23 **Conclusion:** Genetic Counselling significantly enhances SCD awareness and psychological resilience in tribal communities. Expanding culturally tailored counselling services is critical to reducing SCD burden in underserved areas.

26 **Keywords:** Sickle cell disease, genetic counselling, mental health, preventive health services, health knowledge.

27 **Introduction**

28 Sickle cell disease (SCD) is a hereditary hemoglobinopathy
29 characterized by abnormally shaped red blood cells,
30 causing anemia, recurrent pain crises, organ damage,
31 and other complications (1). In India, SCD prevalence
32 ranges from 10% to 40% among tribal populations, such
33 as the Gond and Bhil tribes, posing significant health
34 and social challenges (2,3). Despite screening programs,
35 low awareness in these communities leads to delayed
36 diagnoses, suboptimal management, and psychosocial
37 distress (3). While genetic counselling has been studied
38 globally, its impact on awareness and mental health
39 in India's tribal populations remains underexplored,
40 representing a critical research gap.

41 Genetic counselling provides families with information
42 on SCD's inheritance patterns, management strategies,
43 and reproductive options, empowering informed
44 decision-making (4). It promotes preventive measures,
45 such as premarital and family screening, and community-

based initiatives (5). Additionally, counselling mitigates
46 the psychological burden of SCD, including anxiety,
47 depression, and social isolation, by reducing uncertainty
48 and fostering coping strategies (4).

49 This study assesses the impact of genetic counselling on
50 SCD awareness and mental health outcomes in a high-
51 risk tribal region. Through in-depth interviews with
52 diverse stakeholders, it underscores counselling's role in
53 enhancing knowledge, promoting preventive practices,
54

Correspondence to: Sagar Bayaskar

*Independent Public Health Researcher, India.

Email: sabayaskar@gmail.com

*Full list of author information is available at the end of
the article.*

Received: 02 July 2025 | **Accepted:** 14 October 2025

This is an open access article distributed in accordance with the Creative Commons Attribution (CC BY 4.0) license: <https://creativecommons.org/licenses/by/4.0/> which permits any use, Share — copy and redistribute the material in any medium or format, Adapt — remix, transform, and build upon the material for any purpose, as long as the authors and the original source are properly cited. © The Author(s).

55 and supporting psychosocial well-being in underserved
56 communities.

57 SCD is a major public health concern in India,
58 particularly in tribal regions of Maharashtra, Odisha,
59 and Chhattisgarh, where prevalence is highest among
60 marginalized groups (3). India's National Sickle Cell
61 Anemia Elimination Mission (2023) aims to screen 70
62 million people in high-prevalence districts and eliminate
63 SCD as a public health issue by 2047 (6).

64 Genetic counselling enhances understanding of SCD's
65 genetic basis, transmission risks, and preventive
66 measures, such as premarital and antenatal screening (7).
67 It improves knowledge, facilitates informed reproductive
68 decisions, and increases screening participation
69 (8). However, cultural barriers (e.g., stigma around
70 hereditary diseases) and logistical challenges (e.g.,
71 limited healthcare access) often hinder their effectiveness
72 in tribal settings (5).

73 Counselling also alleviates SCD's psychological toll,
74 including stress, stigma, and anxiety due to limited
75 disease understanding (9). A systematic review found
76 that comprehensive counselling reduces uncertainty
77 and improves mental health outcomes (10). An Indian
78 study by Patel et al. (11) reported reduced anxiety and
79 enhanced emotional preparedness following counselling
80 in high-risk regions, though it focused on urban settings.
81 Community-based approaches integrating counselling
82 with awareness campaigns and digital tools have proven
83 effective in addressing knowledge gaps and psychosocial
84 concerns (5,12). These findings highlight the need for
85 accessible, culturally sensitive counselling to manage
86 SCD in vulnerable populations.

87 This study assesses the impact of genetic counselling on
88 SCD awareness and mental health outcomes in a high-
89 risk tribal region. Through in-depth interviews with
90 diverse stakeholders, it underscores counselling's role in
91 enhancing knowledge, promoting preventive practices,
92 and supporting psychosocial well-being in underserved
93 communities.

94 **Methodology**

95 **Study design**

96 This qualitative, cross-sectional study used in-depth
97 interviews to explore genetic counselling's impact on
98 SCD awareness and mental health outcomes in tribal
99 families.

100 **Study setting and participants**

101 The study was conducted in a high-risk tribal region
102 in Maharashtra, India, with elevated SCD prevalence.
103 Thirty-five participants aged 20-44 years were purposively
104 selected to represent diverse SCD experiences: one SCD
105 patient, one caregiver, one community health worker
106 (CHW), two healthcare professionals (a hematologist
107 and a psychiatrist), and 30 community members. The
108 limited number of patients and caregivers reflects the
109 region's low diagnosis rate, as only one confirmed SCD
110 patient was accessible through local health centers.

Participant recruitment

111
112 Participants were recruited through community health
113 centers, SCD screening programs, and tribal outreach
114 networks. CHWs and healthcare professionals facilitated
115 introductions to patients, caregivers, and community
116 members. Eligibility criteria included age (20-44
117 years), residence in the high-risk area, and varying SCD
118 exposure (e.g., diagnosis, family history, or community
119 involvement). Of the 35 participants, 18 received
120 genetic counselling via screening programs or health
121 centers, and 17 did not. Recruitment continued until
122 thematic saturation, confirmed when no new themes
123 emerged after three consecutive interviews (achieved
124 after ~30 interviews, with five additional interviews for
125 confirmation).

Data collection

126
127 Semi-structured interviews were conducted in person
128 (at community centers or participants' homes) or via
129 telecommunication, based on accessibility. The interview
130 guide, developed through literature review and pilot-
131 tested with two community members for clarity, explored
132 SCD knowledge, genetic counselling experiences,
133 preventive strategies (e.g., premarital screening), and
134 psychological impacts (e.g., stress, coping strategies).
135 Interviews, conducted in Hindi and regional tribal dialects
136 by a bilingual researcher with real-time translation for
137 non-native speakers, lasted 30-60 minutes and were
138 audio-recorded with consent. Transcriptions in local
139 languages were translated to English and back-translated
140 for accuracy. An English-speaking co-researcher ensured
141 quality. Neutral, open-ended questions (e.g., "Can you
142 describe what you know about SCD?") minimized social
143 desirability bias.

Data analysis

144
145 Thematic analysis was applied using an inductive approach.
146 Transcripts were manually coded to identify themes: (i)
147 SCD awareness and knowledge, (ii) engagement with
148 preventive initiatives, and (iii) mental health impacts.
149 Responses were compared between counseled ($n = 18$)
150 and non-counseled ($n = 17$) participants. Two researchers
151 independently coded transcripts, resolving discrepancies
152 through discussion to ensure inter-coder reliability. Key
153 themes were quantified (e.g., percentage of participants
154 reporting specific outcomes) to enhance clarity.

Ethical considerations

155
156 Ethical approval was obtained from the Institutional
157 Ethics Committee of the Datta Meghe Institute of
158 Higher Education and Research, Wardha (Reference no.
159 DMIHER(DU)/IEC/2025/795). The study was conducted
160 in full compliance with the Declaration of Helsinki.
161 Participation was voluntary, anonymity was maintained,
162 and participants could withdraw at any time without
163 penalty. All participants provided written informed
164 consent prior to their inclusion in the study. They were
165 informed about the study's purpose, procedures, potential
166 risks, and their right to withdraw at any time without
167 consequences.

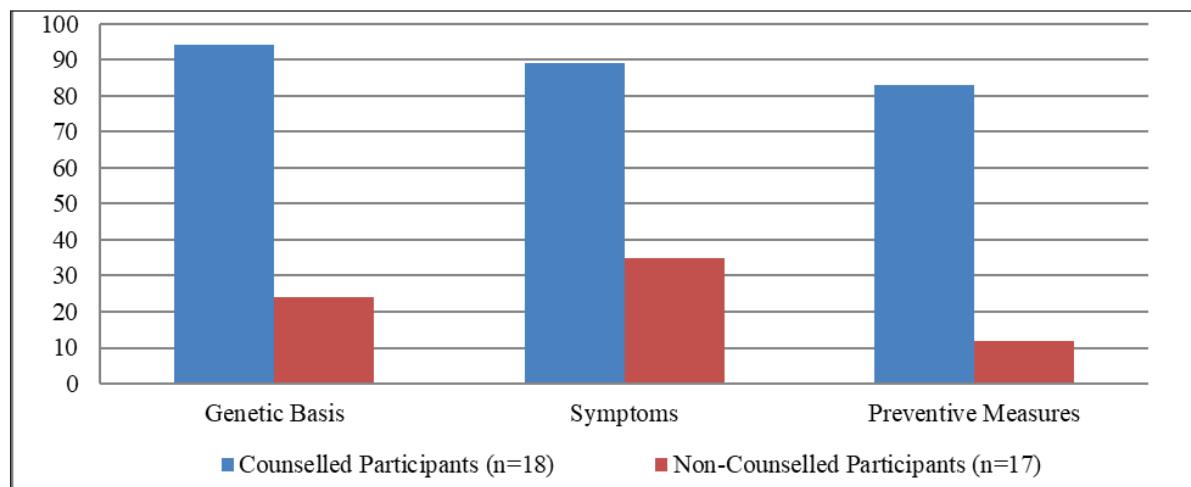
168 **Results**169 ***Awareness and knowledge of sickle cell disease***

170 Counseled participants ($n=18$) showed robust knowledge, 195
 171 with 94% (17/18) understanding SCD's genetic basis 196
 172 and 89% (16/18) accurately describing symptoms (e.g., 197
 173 anemia, pain crises, fatigue) as illustrated in Figure 1. 198
 174 The SCD patient stated, "Counselling clarified that SCD 199
 175 is inherited from both parents' genes, not caused by food 200
 176 or water." The hematologist noted, "Counselling helps 201
 177 families grasp the importance of screening." Conversely, 202
 178 only 24% (4/17) of non-counseled participants recognized 203
 179 SCD's hereditary nature, with 59% (10/17) mistaking it 204
 180 for an infection and 41% (7/17) for general anemia. A 205
 181 non-counseled community member said, "I thought it 206
 182 was weakness from a poor diet."

183 ***Awareness of preventive measures and 207
 184 community initiatives***

185 Counseled participants demonstrated greater awareness 210
 186 of preventive strategies, with 83% (15/18) familiar with 211
 187 premarital screening, family testing, and community 212
 188 initiatives (e.g., school campaigns, health center 213
 189 screenings) as shown in Figure 1 and Table 1. The 214
 190 caregiver remarked, "Counselling taught us to test before 215
 191 marriage; we now encourage others to do the same." 216
 192 The CHW reported, "Counselling's increases family 217
 193 participation in screening camps." Only 12% (2/17) 218
 194 of non-counseled participants knew about preventive 219
 220

measures, with one stating, "I didn't know tests could 195
 prevent this; we just manage the pain."


196 ***Impact on mental health***

198 Counseled participants reported improved mental health, 199
 199 with 78% (14/18) experiencing reduced anxiety, better coping 200
 200 strategies, and greater emotional resilience, as summarized 201
 201 in Table 1. The SCD patient shared, "Counselling made me 202
 202 feel less scared about my child's future." The psychiatrist 203
 203 noted, "Counselling helps families process stigma and build 204
 204 resilience." Conversely, non-counseled participants reported 205
 205 higher stress (71%, 12/17), sleep disturbances (53%, 9/17), 206
 206 and isolation. A non-counseled community member said, "I 207
 207 can't sleep worrying about why this disease hit us; it feels 208
 208 like a curse."

209 **Discussion**

210 This study underscores genetic counselling's pivotal 211
 211 role in enhancing SCD awareness and mental health 212
 212 in India's tribal communities. Counseled participants' 213
 213 superior knowledge of SCD's genetic basis (94% vs. 214
 214 24%) and preventive measures (83% vs. 12%) aligns 215
 215 with global evidence that counselling promotes informed 216
 216 decision-making and screening participation (7,8). 217
 217 However, cultural barriers, such as stigma surrounding 218
 218 hereditary diseases, and logistical challenges, like 219
 219 limited healthcare access in tribal areas, may reduce 220
 220 counselling's effectiveness (5).

221 The mental health benefits, with 78% of counseled 222
 222 participants reporting reduced anxiety and improved

Figure 1. Awareness of sickle cell disease among participants bar chart comparing awareness levels between counselled ($n=18$) and non-counseled ($n=17$) participants across three knowledge areas: genetic basis (94% vs. 24%), symptoms (89% vs. 35%), and preventive measures (83% vs. 12%).

Table 1. Summary of key outcomes: counselling versus no counselling.

Outcome	Counseled ($n=18$)	Non-counseled ($n=17$)
Knowledge of SCD	94% (17/18) understood genetic basis; 89% (16/18) knew symptoms	24% (4/17) understood genetic basis; 35% (6/17) knew symptoms
Preventive measures	83% (15/18) aware of screening and community initiatives	12% (2/17) aware of preventive strategies
Mental health	78% (14/18) reported reduced anxiety, better coping strategies, and greater emotional resilience	71% (12/17) reported stress; 53% (9/17) had sleep disturbances

223 coping, corroborate findings that counselling mitigates
224 uncertainty and stigma (9,10). The contrast with non-
225 counseled participants (71% reporting stress, 53% with
226 sleep disturbances) highlights SCD's psychosocial toll
227 without support. This study extends Patel et al.'s urban-
228 focused findings, emphasizing counselling's impact in
229 tribal contexts (11).

230 The results support India's National Sickle Cell Anemia
231 Elimination Mission (2023), which prioritizes screening
232 and prevention (6). Integrating counselling into routine
233 screening camps, training CHWs to deliver basic
234 counselling in local dialects, and developing mobile-
235 based audio-visual counselling apps for low-literacy
236 populations could enhance the Mission's impact.
237 Addressing tribal-specific challenges, such as nomadic
238 lifestyles and low literacy, is critical for scalability (5).

239 Limitations include the qualitative design's limited
240 generalizability and the small sample of patients ($n =$
241 1) and caregivers ($n = 1$), reflecting low diagnosis rates
242 but restricting stakeholder perspectives. Selection bias
243 may exist, as participants recruited via health centers
244 may be more health-engaged. The cross-sectional design
245 precludes assessing long-term impacts. Although neutral
246 questioning minimized social desirability bias, self-
247 reported data may still be influenced.

248 Future research should use mixed-methods designs
249 to validate findings across diverse populations and
250 longitudinal studies to evaluate sustained impacts.
251 Exploring digital or community-based counselling
252 models tailored for low-literacy tribal populations could
253 identify scalable strategies.

254 Conclusion

255 Genetic counselling significantly enhances SCD
256 awareness, promotes preventive practices, and fosters
257 psychological resilience in tribal communities. Expanding
258 culturally tailored counselling services, integrated with
259 national SCD programs, is essential to reduce disease
260 burden and improve quality of life in underserved areas.

261 Acknowledgement

262 The authors thank the participants for sharing their
263 experiences, local healthcare workers and screening
264 program coordinators for facilitating interviews, and the
265 institutional ethics committee for guidance. No funding
266 was received.

267 List of Abbreviations

268 CHW Community health worker
269 SCD Sickle cell disease

270 Conflict of interest

271 The authors of this article have no affiliations with or
272 involvement in any organization or entity with any financial
273 interest or non-financial interest in the subject matter or
274 materials discussed in this manuscript.

275 Funding

276 None.

Author contributions

Both authors contributed equally to the study design, data
collection, analysis, and manuscript preparation.

Consent to participate

Informed consent was obtained from all participants,
ensuring voluntary participation and the right to withdraw
at any stage.

Author details

Sagar Bayaskar¹, Aishwarya Mahalle²

1. Independent Public Health Researcher, Amravati, India

2. Independent Public Health Researcher, Nagpur, India

References

1. Rees DC, Williams TN, Gladwin MT. Sickle-cell disease. Lancet. 2010;376(9757):2018–31. [https://doi.org/10.1016/S0140-6736\(10\)61029-X](https://doi.org/10.1016/S0140-6736(10)61029-X)
2. Mohanty D, Mukherjee MB, Colah RB. Sickle cell disease in India. Curr Opin Hematol. 2013;20(3):215–23. <https://doi.org/10.1097/MOH.0b013e32835f3c17>
3. Colah RB, Mukherjee MB, Martin S. Sickle cell disease in tribal populations in India. Indian J Med Res. 2015;141(5):509–15. <https://doi.org/10.4103/0971-5916.159249>
4. Biesecker BB, Peters KF. Process studies in genetic counselling: peering into the black box. Am J Med Genet. 2001;106(3):191–8. <https://doi.org/10.1002/ajmg.10004>
5. Rao VR, Ghosh S, Chopra M. Community genetic services in India: current status and future challenges. Indian J Public Health. 2021;65(Suppl):S25–S31. https://doi.org/10.4103/ijph.IJPH_104_21
6. Ministry of Health and Family Welfare. National Sickle Cell Anaemia Elimination Mission–2023. Government of India; 2023 [cited 2025 Aug 27]. Available from: <https://sickle.nhm.gov.in/>
7. Shah N, Mishra A, Parikh B. Advances in sickle cell screening and genetic counselling in India. Hemoglobin. 2020;44(3):174–80. <https://doi.org/10.1080/03630269.2020.1757466>
8. Inusa BPD, Hsu LL, Kohli N, Patel A, Ominu-Evbota K, Anie KA, et al. Sickle cell disease—genetic counselling and testing. Int Health. 2019;11(5):331–41. <https://doi.org/10.1093/inthealth/ihz015>
9. Anie KA, Green J. Psychological therapies for sickle cell disease and pain. Cochrane Database Syst Rev. 2015;2015(5):CD001916. <https://doi.org/10.1002/14651858.CD001916.pub3>
10. Treadwell M, McClough L, Vichinsky E, Smith WR. Improving the quality of genetic counselling for sickle cell disease: a systematic review. Am J Med Genet C Semin Med Genet. 2021;187(1):57–68. <https://doi.org/10.1002/ajmg.c.31868>
11. Patel S, Deshmukh S, Kaur G. Impact of genetic counselling on awareness and psychological well-being among sickle cell families: an Indian perspective. J Commun Genet. 2022;13(4):567–75. <https://doi.org/10.1007/s12687-022-00598-4>
12. Piel FB, Steinberg MH, Rees DC. Sickle cell disease. N Engl J Med. 2017;376(16):1561–73. <https://doi.org/10.1056/NEJMra1510865>